An upper triangular form of the tridiagonal matrix may be obtained as follows:

bf=b,-—;—"cf1 i=2.3. .. NI

=g — ——gi1 i=2.3 . NI
bi_1
ENI
Iy = T—
bni
¢l .
T=81"0000 N1 NT=2,.. 1
bj
It should be noted that Neumann boundary conditions can also be accommodated

mnto this algorithm with the tridiagonal form still maintained.

4.3 HYPERBOLIC EQUATIONS

Hyperbolic equations, in general, represent wave propagation. They are given by either
first order or second order differential equations, which may be approximated in either
explicit or implicit forms of finite difference equations. Various computational schemes
are examined below.

43.1 EXPLICIT SCHEMES AND VON NEUMANN STABILITY ANALYSIS

Euler’s Forward Time and Forward Space (FTFS) Approximations

Consider the first order wave equation (Euler equation) of the form

u au

ar ta ax
The Euler’s forward time and forward space approximation of (4.3.1) is written in the
FTFS scheme as

Wit u', . —u”
S Rt 2 S (4.32)
At Ax

It follows from (4.2.15) and (4.3.2) that the amplification factor assumes the form

=0, a>0 (4.3.1)

g=1-C(!®*-1)=1-C(cosd—1) — ICsindp =1+ 2Csin? % —ICsind  (4.3.3)

with C being the Courant number or CFL number [Courant, Friedrichs, and Lewy,
1967,
anNt
T Ax
and

gl’=gg —(1-|—2Csm2 w) + C%sin’ ¢_1+4C(1—C)sm 5 > 1 (4.3.4)

where g* is the complex conjugate of g. Note that the criterion |g| < 1 for all values of
& can not be satisfied (|g| lies outside the unit circle for all values of ¢, Figure 4.3.1).
Therefore, the explicit Euler scheme with FTFS is unconditionally unstable.

~{
-~
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img Region of Instability
F 3 f

/
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‘ 3 n=-Csino
Clo «

» Reg

E=(1-0C)+Ccosp

Figure 4.3.1 Complex g plane for upwind scheme with unit circle repre-
senting the stability region.

Euler’s Forward Time and Central Space (FTCS) Approximations

In this method, Euler’s forward time and central space approximation of (4.3.1) is
used:

Wt ()

= —g—" A 3.
~ a T ,  O(At, Ax) (4.3.5)

The von Neumann analysis shows that this is also unconditionally unstable.

Euler’s Forward Time and Backward Space (FTBS) Approximations —

First Order Upwind Scheme

The Euler’s forward time and backward space approximations (also known as up-
wind method) is given by

n+1 n

u I_ no_n
4 - g—"=  O(AL A 4.3.6
At ¢ Ax ( ¥) ( )

The amplification factor takes the form
g=1-C(l—e ®)=1-C(1 - cosdp)— Isind
=1—2C sin’ % —ICsind (4.3.7)
or
b2
g=£&+In, lg| = ]I:l —4C(1 - C) sin’ 5} (4.3.8a,b)
with
_ 2 ¢
£ =1-2Csin E_(l—C)—l—Ccosd)
n= —Csind
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A N=Im(g)

—» C-Re(g)

(1) Exact solution {2) Soluticn with (3) Solution with
dissipation error dispersion error
(©

Figure 4.3.2 Dissipation and dispersion errors compared to exact solu-
tion. (a) Dissipation error (amplification factor modulus |g|). (b) Disper-
sion error (relative phase error, ®/®). (¢) Comparison of exact solution
with dissipation error and dispersion error for shock tube problem.

which represents the parametric equation of a unit circle centered on the real
(1 — C) with radius C (Figure 4.3.1), whereas the modulus of the amplification factor,
|g!, for various values of C are shown in Figure 4.3.2a.

In this complex plane of g, the stability condition (4.3.7) states that the curve repre-
senting g for all values of ¢ = kAx should remain within the unit circle. It is seen that
the scheme is stable for

0<g<l (4.3.9)

Hence, the scheme (4.3.6) is conditionally stable. Equation (4.3.9) is known as the
Courant-Friedrich-Lewy (CFL) condition.

We have so far discussed the amplification factor ¢ which represents dissipation
error (Figure 4.3.2a). In numerical solutions of finite difference equations, we are also
concerned with dispersion (phase) error as shown in Figure 4.3.2b. The phase & as
determined by the adopted numerical scheme is given by the arctangent of the ratio of
imaginary and real parts of g,

—Csind

_y Im(g) 1M B
& — tan-! — tan~! D= (an—! 43.1
M Re(e) T ET™ T-CtCooso (43.10)
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The phase angle & is
& =kaAt=Cd (4.3.11)
The dispersion error or relative phase error is defined as

: tan~! {(=Csin ¢)/(1 — C + C cos )]
s = 2 = Co (4.3.12a)

or
1
go 1 — 6(2(?2 —3C+1) ¢ (4.3.12b)

As shown in Figure 4.3.2b, the dispersion error is said to be “leading” for g4 > 1.

The dissipation error and dispersion error for a shock tube problem can be compared
to the exact solution. This is demonstrated in Figure 4.3.2¢. Here, we must choose com-
putational schemes such that dissipation and dispersion errors are as small as possible.
To this end, we review the following well-known methods.

Lax Method
In this method, an average value of u in the Euler’s FTCS is used:

n+1 l‘n noo C'n noo) ‘43 13
U :E(ui+1+ui—1)——Z_(Mi—!-l_ui—l) (£.3.15)

The von Neumann stability analysis shows that this scheme is stable for C <1.

Midpoint Leapfrog Method
Central differences for both time and spaces are used in this method:

ntl _gn-d a(u?, , —u?
u; 2A;'£l - _ ( 1+21A t—l)’ O(Atz, sz) (4314)
X

This scheme is stable for C < 1. It has a second order accuracy, but requires two sets
of initial values when the starter solution can provide only one set of initial data. This
may lead to two independent solutions which are inaccurate.

Lax-Wendroff Method
In this method, we utilize the finite difference equation derived from Taylor series,

du 1
u(x,t+ Aty =u(x, t)+——At+ O — AP+ 0O(AP) (4.3.15a)

21 012
or

’)

2'82

n+1

U, (4.3.15b)

Differentiating (4.3.1) with respect to time yields

3’u 3 (du ,9%u
T E(E)za . (43.16)
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Substituting (4.3.1) and (4.3.16) into (4.3.15b) leads to

9 AP (532

Using central differencing of the second order for the spatial derivative, we obtain

ul L —ul 1 ug | — 2w +u

o = —ani (B ) - Jaan (TR, o ad)
X X

(4.3.18)

This method is stable for C < 1.

4.3.2 IMPLICIT SCHEMES

Implicit schemes for approximating (4.3.1) are unconditionally stable. Two representa-
uve mmplicit schemes are Euler’s FTCS method and the Crank-Nicolson method.

Euler’'s FTGS Method
u?+1 - Lt? —a n n
= ('t — ), O(ar, Ax?) (4.3.19)
or
C C
SN - = St = (4.320)

Crank-Nicolson Method

n+1 n n+1 a+1 n n
w7 — aj b~ Uy — Uy 2 A2
_— = = + R O At y Ax 4321
At 2[ 2Ax 2Ax ( ) ( )
or
C C C C
bl e bl - . C PN
Zo T = ey — (%.2.22)

Examples of the numerical solution procedure for a typical first order hyperbolic
equation using the explicit and implicit schemes are shown in Section 4.7.3.

4.3.3 MULTISTEP (SPLITTING, PREDICTOR-CORRECTOR) METHODS

Computational stability, convergence, and accuracy may be improved using multistep
{intermediate step between n and n + 1) schemes, such as Richtmyer, Lax-Wendroff,
and McCormack methods. The two-step schemes for these methods are shown below.

Richtmyer Multistep Scheme
Step 1

nt3 1 n n
U; 2 (g + 1) . (', —ul ) (4.323a)
At/2 2Ax o
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Step 2
n+s n+y
1 i —U.
At 2Ax -

These equations can be rearranged in the form

Step 1
”:'H% = %(u?ﬂ +uly) - %(”?H — 1) (4.3.24a)
Step 2
uft = uf — %(u?jf —~ u;“jﬁ), O(AF, Ax?) (4.3.24b)

This scheme is stable for C < 2.

Lax-Wendroff Multistep Scheme

Step 1
+1 1 ~n C
1 = gl ) = (el ), O(Ar, A (4.3.250)
Step 2
1 1
Wt =uj - C (u; — uff;), O(AL%, Ax?) (4.3.25b)

The stability condition is C < 1. Note that substitution of (4.3.25a) into (4.3.25b) re-
covers the original Lax-Wendroff equation (4.3.18). The same result is obtained with
(4.3.24a) and (4.3.24b).

MacCormack Multistep Scheme

. . . L n+3
Here we consider an intermediate step u} which is related to u; *:

|
u = 5 (1) (4.3.26)
Step 1
* _ oyl u' o —ul
“i W _a( o — 1) (4.3.27a)
At Ax
Step 2
n+l _ '.H% u— ur
Wty ) (4.3.27b)
At /2 Ax

Substituting (4.3.26) into (4.3.27b) yields

Predictor
wf =u! — C(u}, —u}) (4.3.28a)
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Corrector

Wt = %[(uf +uf)— Cuf —ui )], O(Ar?, Ax?) (4.3.28b)

1

with the stability criterion of C < 1.
The MacCormack multistep method is well suited for nonlinear problems. It be-
comes equivalent to the Lax-Wendroff method for linear problems.

4.3.4 NONLINEAR PROBLEMS

A classical nonlinear first order hyperbolic equation is the Euler’s equation

ou ou
— =y 4.3.29
or - Vax (4.3.29)
which in conservation form may be written as
N (4.330a)
Y 3.30a
at dx \ 2
or
du oF u?
— =——"  with F={— 4.330b
o e (2) (4.3.30b)

vy catrmaval maatlhe Ao T — 1~

of (4.3.30b) ma tained by several methods: Lax

—I-hC auluuuu O1 \ wJe JUU) 1iad 1
Wendroff method, MacCormack method, and Beam-Warming implicit method.
are described below.

et
o
=
o &
(({D) !

Lax Method
In this method, the FT'CS differencing scheme is used.
Wt - o~ FL 2
— Lt =———— 0O(A1L A 4331
x AT (A1, Ax7) ( )
To maintain stability, we replace u! by its average,
1 At
™ = 5 (W ) = s (B — F) (4.3.32)
or
1 At ) 2
1 n 7
wr = §(M?+1 +ul ) - IA_X[(MM) = (1424)7] (4.3.33)
The solution will be stable if
At
A Vmax <1 (4.3.34)

Lax-Wendroff Method
In this method, the finite difference equation is derived from the Taylor series
expansion,

2

u 1 9-u
n+1
= ——A ———At 4.3.35
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Using (4.3.30b) we have

Fu 9 (dF\ 9 (dF
a2 ar\ax /) ax\ ot

where
oF _ aF ou  OF (_BF) ABF

9t duw ot om\ ax

with A being the Jacobian.
0
- (%)=
ou ou\ 2 )

Thus

82
Yu _ B (LN (40
ot? ax ox ox dx
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(4.3.36)

(4.3.37)

(4.3.38)

(4.3.39)

Substituting (4.3.39) and (4.3.30b) into (4.3.35) yields

oF ad aF
n+1 n
T =u —— AL+ — | A—
“i u’+( 8x) +8x( ax)

i —up  OF 3 (ABF
ax

or

At - 8x+a

At?

+ O(AL)

) 5 + O(AF?)

Approximating the spatial derivatives by central differencing of order 2,

- 2AXx

Wit —up CRL - n At
Al 2Ax

The last term above is approximated as

dx/H—] . dx/t—— ni+§

oF

n 9F n
)., (%)
ax i+% ax i—%

(A — (A AN Flri-l ' _
Ax -3 Ax

(4.3.40)

£ F'R_E'nq

Ax N
(An : +An)(Fn

i+1

1

_2Ax F)—

I

For A = u, we obtain

Al

2Ax(
1 Af?
4 Ax

n+l _ ., .n n Fr
ui =u; — F] l 1)

i+1

LLLLLL

ﬂmﬁwmr—m—w+¢mw4mﬂ

(4.3.41)

(4.3.42)

This is second order accurate with the stability requirement,

At

—Umax| < 1
Ax
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MacCormack Method
In this method, the multilevel scheme is used as given by
* n At 4] 13
uf = ul' — E(F”i — F) (4.3.43a)
" r, . At .
Wt = 5[ "y E(Fl _ Fi—l)] (4.3.43b)

Because of the two-level splitting, the solution performs better than the Lax method
or the Lax-Wendroff method. One of the most widely used implicit schemes is the
Beam-Warming method, discussed below.

Beam-Warming Implicit Method
Let us consider the Taylor series expansion,

%u| Atr?

au
AN =u(x, t)+ — —| =—+0(ar 4.3.44
(et B0 =ua )+ 31| At | S+ 0(ar) (43.44)
and
3 32 Af?
w(x, ) = u(x, t + Ar) — 22 A+ S +o(ar) (4.3.45)
at x,t+ At at x.t+ At 2
Subtracting (4.3.45) from (4.3.44)
du | du |
2u{x, t + At) = 2u(x, r)+—E Af + o At
at X, at x4+ At
Pu| AP du AL
- 4+ 0O(Ar
otz |, 20 9|, A 2! +O(Ar)
or
1| /au\"  [ou\"T! 1| /8%u\" [3%u\""'| Ar?
n+l__,n . — |22 —_ At = —1Y) —{ — 4+ 0(Ar
“ u’+2|:(8t)i+(81‘)l } 3 \ae ; at* J, TI (Ar)
where

B\t (%u\" 8 [8%u\"
= — At + O(AF?
(7). =(&) +alem) srrowd

Thus, we arrive at

1 du\" u\"t!

n+1l n 3

b gy = — At At 3.46
u ul+2|:(a[)i+(a[)i ] +O(Ar) (4.3.46)
For the model equation

ou aF
s 4.3.47
dat dx ( )

Using (4.3.46) in (4.3.47), we obtain
Wy 1| faFN\"  faF\"T!
i Bt S I il il O(AL? 4348
At 2[(8x)i+(8x)i +0O(ar) (4.348)

This indicates that (4.3.48) leads to the second order accuracy.

[0
(97
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Recall that the nonlinear term F =u?/2 was applied at the known time level », and
the resulting FDE in explicit form was linear. The resulting FDE in implicit formulation
is nonlinear, and therefore a procedure is used to linearize the FDE. To this end, we
write a Taylor series for F(¢ + At) in the form

F(t+ A1) = F(t) + aa_FAt + O(Ar?)

= F({t)+ &;F% At + O(AL?)
or
F"*L_F’%LE /M\Awro At? 43.49
7 Jar+0(ar) (4.3.49)
Taking a partial derivative of (4.3.49) yields
aF\"*T'  [oF i)
(a) = (a) aX[A(u'“” u")] (4.3.50)

Combining (4.3.48) and (4.3.50) gives

Wl —uwt L[ AF\" [OF\" 8 nil o
() (), e )

or

u'f“:u;‘_%m{z(%) +i[,4(un+l_u¢)]} (4.3.51)

‘ dx ax !

Using a second order central differencing for the terms with A on the right-hand side
of (4.3.51) and linearizing, we obtain

n Fr n n+l n n+1
n+1 n_lA[[ (F;—i-l i-l) Al+1 I+1 Aifluifl

e =M 2Ax N 2Ax

AN A -1

Al ul i
i 1+12sz—1 l—lJ (4.3.52)

Modifying (4.3.52) to a tridiagonal form

At At

I
A S,
. 1AL At
=u; — E*A'A_x'([;;‘il —F_)+ 4_A‘);A?+L“?+1 IAx A”fl up +D (4.3.53)

This scheme is second order accurate, unconditionally stable, but dispersion errors may
arise. To prevent this, a fourth order smoothing (damping) term is explicitly added:

w
D= _‘g(“fu —dul g+ 6u] — Al +ul ),
with 0 < o < 1. Since the added damping term is of fourth order, it does not affect the

second order accuracy of the method.



4.3.5 SECOND ORDER ONE-DIMENSIONAL WAVE EQUATIONS
Let us consider the second order one-dimensional wave equation,

8%u 282u
o a0 43.54
gz = 7 ax2 ( )

Here we require two sets of initial conditions,
u(x,0)= f(x)

5,0 =g(x)

Lt QO

Clﬁ(] LI
€ariv) AARYS

(0, 1) = hi (1)
u(L, t) = hao(r)

We may use the midpoint leapfrog method for this problem,

= 2uf — w4 C*uf ) — 2u) + ) (4.3.55)
0 0
If we choose 2459 _ ¢ then
u“’ﬁ'l — u’f'_l
i I =0
2AL
or
u’?"’l — u’."_i
)

4

Thus, from (4.3.55), we obtain

1
Wit =ul 4 ECK"(uf_1 —2uf +ul',)) (4.3.56)

This is called the midpoint leapfrog method. An example problem for the second order
hyperbolic equation is demonstrated in Section 4.7.4.

4.4 BURGERS’ EQUATION

The Burgers’ equation is a special form of the momentum equation for irrotational,
incompressible flows in which pressure gradients are neglected. It is informative to
study this equation in the one-dimensional case before we launch upon full-scale CFD
problems.

Consider the Burgers’ equation written in various forms:

du du %u

du ou e
T = (442
du dF  du



